Definitions and key facts for section 1.4

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}$, and if \mathbf{x} is in \mathbb{R}^{n}, then the product of A and \mathbf{x}, denoted by $A \mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights; that is,

$$
A \mathbf{x}=\left[\begin{array}{llll}
\mathbf{a}_{\mathbf{1}} & \mathbf{a}_{\mathbf{2}} & \cdots & \mathbf{a}_{\mathbf{n}}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{\mathbf{1}}+x_{2} \mathbf{a}_{\mathbf{2}}+\cdots x_{n} \mathbf{a}_{\mathbf{n}}
$$

Row-vector rule for computing $A x$

If the product $A \mathbf{x}$ is defined, then the i th entry in $A \mathbf{x}$ is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x}.

Fact: Propeties of the matrix product $A x$
Let A be a $m \times n$ matrix, \mathbf{u} and \mathbf{v} be vectors in \mathbb{R}^{n}, and c be a scalar, then:

1. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
2. $A(c \mathbf{u})=c(A \mathbf{u})$

Fact: Matrix equations and linear systems

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}$ and if \mathbf{b} is in \mathbb{R}^{m}, the matrix equation

$$
A \mathbf{x}=\mathbf{b}
$$

has the same solution set as the vector equation

$$
x_{1} \mathbf{a}_{\mathbf{1}}+x_{2} \mathbf{a}_{\mathbf{2}}+\cdots+x_{n} \mathbf{a}_{\mathbf{n}}=\mathbf{b}
$$

which in turn has the same solution set as the linear system with augmented matrix

$$
\left[\begin{array}{lllll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{\mathbf{n}} & \mathbf{b}
\end{array}\right]
$$

A set of vectors $\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}$ spans \mathbb{R}^{m} if every vector $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}$, equivalently, $\operatorname{Span}\left\{\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{p}}\right\}=\mathbb{R}^{m}$.

Fact: Consistency of $A \mathbf{x}=\mathbf{b}$ for all \mathbf{b}
For a given $m \times n$ matrix A, the following are equivalent. That is, either every statment is true, or every statement is false.

1. For each $\mathbf{b} \in \mathbb{R}^{m}$, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
2. each $\mathbf{b} \in \mathbb{R}^{m}$ is a linear combination of the columns of A.
3. The columns of A span \mathbb{R}^{m}.
4. A has a pivot position in every row.
