Definitions and key facts for section 1.4

If A is an $m \times n$ matrix, with columns $\mathbf{a}_1, \ldots, \mathbf{a}_n$, and if \mathbf{x} is in \mathbb{R}^n , then **the product of** A **and** \mathbf{x} , denoted by $A\mathbf{x}$, is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights; that is,

$$A\mathbf{x} = \begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & \cdots & \mathbf{a_n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\mathbf{a_1} + x_2\mathbf{a_2} + \cdots + x_n\mathbf{a_n}.$$

Row-vector rule for computing Ax

If the product $A\mathbf{x}$ is defined, then the *i*th entry in $A\mathbf{x}$ is the sum of the products of corresponding entries from row *i* of *A* and from the vector \mathbf{x} .

Fact: Propeties of the matrix product Ax

Let A be a $m \times n$ matrix, **u** and **v** be vectors in \mathbb{R}^n , and c be a scalar, then:

- 1. $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
- 2. $A(c\mathbf{u}) = c(A\mathbf{u})$

Fact: Matrix equations and linear systems

If A is an $m \times n$ matrix, with columns $\mathbf{a_1}, \ldots, \mathbf{a_n}$ and if **b** is in \mathbb{R}^m , the matrix equation

 $A\mathbf{x} = \mathbf{b}$

has the same solution set as the vector equation

$$x_1\mathbf{a_1} + x_2\mathbf{a_2} + \dots + x_n\mathbf{a_n} = \mathbf{b}$$

which in turn has the same solution set as the linear system with augmented matrix

 $\begin{bmatrix} a_1 & a_2 & & a_n & b \end{bmatrix}.$

A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_p\}$ spans \mathbb{R}^m if every vector $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of $\mathbf{v}_1, \ldots, \mathbf{v}_p$, equivalently, $\text{Span}\{\mathbf{v}_1, \ldots, \mathbf{v}_p\} = \mathbb{R}^m$.

Fact: Consistency of Ax = b for all b

For a given $m \times n$ matrix A, the following are equivalent. That is, either every statement is true, or every statement is false.

- 1. For each $\mathbf{b} \in \mathbb{R}^m$, the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- 2. each $\mathbf{b} \in \mathbb{R}^m$ is a linear combination of the columns of A.
- 3. The columns of A span \mathbb{R}^m .
- 4. A has a pivot position in every row.